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1 The Unintended Impact of Helmet Use on Bicyclists’ Risk-taking Behaviors
2

3 Abstract:

4 Bicycle helmet compensation effects suggest that bicyclists offset perceived gains in safety from 

5 wearing a helmet by behaving more aggressively. A better understanding of these compensation 

6 effects can be useful in assessing mandatory legislated helmet use laws. Using a sample of 131 

7 bicyclists, this research studies how bicyclists respond with respect to risk-taking behaviors 

8 under various urban-street conditions, as a function of helmet use. Study participants are each 

9 shown 12 videos, shot in Berkeley, California, from the perspective of a bicyclist riding behind 

10 another bicyclist. A fractional factorial experiment design is used to systematically vary 

11 contextual attributes, such as speed, bike lane facilities, on-street parking, passing vehicles, etc., 

12 across the videos. After each video, participants are asked to indicate if they would overtake the 

13 bicyclist in the video. With the help of data adaptive estimation techniques, targeted maximum 

14 likelihood estimation (TMLE) is applied to estimate the average risk difference between helmet 

15 users and non-users, controlling for self-selection effects. Individual-based nonparametric 

16 bootstrap is performed to assess the uncertainty associated with the estimator. Our findings 

17 suggest, on average, helmet users are 15.6% more likely to overtake, and the effect is statistically 

18 significant using the non-parametric bootstrap sampling evaluation. This study serves as a 

19 cautionary warning that road safety programs may need to consider strategies in which 

20 unintended impact of bicycle helmet use can be mitigated.

21
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1 1. Introduction

2 Bicycling is a world-wide activity and an important means of achieving sustainable 

3 transportation (Kang et al., 2013). However, as vulnerable road users sharing space with fast 

4 moving vehicles, bicyclists are also exposed to dangerous riding environment (Amoros et al., 

5 2011; Kang and Fricker 2013). Many studies have shown the effectiveness of helmets in 

6 preventing head injuries among bicyclists and hence, legislated mandatory bicycle helmet use is 

7 required in several countries (Bambach et al., 2013; Thompson et al., 1989). Moreover, 

8 mandatory bicycle helmet laws have been found to increase helmet wearing rates internationally 

9 (Macpherson and Spinks, 2008). However, most countries haven’t imposed such regulation on 

10 bicyclists and very few studies have investigated the compensation effects of wearing helmet. 

11 Hence, from policy makers’ perspective, in order to capture the full spectrum of the impacts of 

12 helmet, studies examining the bicycle helmet compensation effects are needed for future policy 

13 making efforts, especially amid the emerging trend of using public bicycles (Jiang et al., 2010; 

14 Hsu et al., 2016; Wu et al., 2017). 

15 In economic theory, the "risk compensation" hypothesis suggests that individuals offset 

16 perceived gains in safety by increasing their risk-taking behavior to maintain a stable or 

17 "homeostatic" level of risk. Many studies have tested this hypothesis in the context of motor 

18 vehicles, such as Cohen and Einav (2003), Winston et al. (2006), Lv et al. (2015), and Abay and 

19 Mannering (2016). For example, Winston et al. (2006) find that motorists drove faster when the 

20 vehicles were fitted with anti-lock brakes and airbags. By contrast, shared space, served as traffic 

21 calming strategy, is a highway design method which consciously aims to increase the level of 

22 perceived risk, thereby slowing traffic and reducing accidents (Department for Transport, 2011; 

23 Kang and Fricker, 2016).

24 In the context of bicycling, some studies have confirmed that helmet usage for bicyclists 

25 could reduce cases of severe injury (Rodgers, 2002; Thompson et al., 1989; Moore et al., 2011; 

26 Lee et al., 2005; Walter et al., 2011; Behnood and Mannering, 2017; Olofsson et al., 2017; Ohlin 

27 et al., 2017). However, other studies found different results of helmet use. Using the 2003-2008 

28 General Estimates System databases, Kweon and Lee (2010) investigated the beneficial effect of 

29 bicycle helmet use. Helmet use was found to be statistically insignificant in 2003, 2005, 2006, 

30 and 2008 in terms of reducing bicyclists’ injury severity. However, they claimed it might be due 
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1 to a possible lack of representation of helmet use variable in above years. Based on a case-

2 control study, Rivara et al. (1997) claimed that prevention of serious bicycle injuries cannot be 

3 accomplished solely by helmet use. Even though helmet use would help reduce bicyclists’ injury 

4 severity, yet due to potential compensation effects of helmet use, in which bicyclists offset 

5 perceived gains in safety of wearing helmet by behaving more aggressively, the frequency of 

6 bicycle-related crashes might increase. However, it is difficult to analyze the effects of helmet 

7 policy in an aggregate level due to the difficulty of obtaining bicyclists’ accurate exposure 

8 information (e.g. total bicycle-miles travelled). Without accurate estimate of bicycle exposure 

9 information, the estimated effect of helmet use might be biased and the corresponding policy 

10 implications might be misleading.

11 With the above discussion in mind, the intent of this study is to bridge the research gap 

12 by providing a rigorous statistical analysis of bicycle helmet compensation effects from a 

13 disaggregate perspective. By focusing on individual bicycling behaviors rather than aggregate 

14 level bicycle-related accident outcomes, no exposure information is needed. To this end, an 

15 online survey was conducted to collect stated behaviors of bicyclists under different scenarios. 

16 The objective of this study is to estimate the effect of helmet use on a bicyclist’s risk taking 

17 behavior (specifically overtaking behavior) and test the compensation hypothesis of helmet use. 

18 The remainder of the paper is organized as follows. Existing literature on two study 

19 streams on bicycle helmet effects will be reviewed in Section 2. Section 3 covers experiment 

20 design and data collection efforts. In Section 4, targeted maximum likelihood estimation (TMLE) 

21 approach is used to estimate the effect of helmet on bicyclists’ risk taking behaviors. We target at 

22 the effect estimation of helmet so that policy implications can be drawn. Details regarding 

23 different estimators and model specification will be discussed in Section 4 and 5. Estimation 

24 results are presented in Section 6. Summary and conclusions are presented in Section 7.

25 2. Literature Review

26 In this section, we focus on reviewing existing literature on two study streams with regard to 

27 bicycle helmet effects in terms of study scope: population level and individual level. This 

28 provides us a starting point for study design and illustrates the significance of the proposed 

29 disaggregate (individual-level) based method.
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1 The analyses of mandatory bicycle helmet legislation are usually based on actual accident 

2 data or hospital injury report to assess its impacts. For example, based on hospital admission data 

3 from New South Wales, Australia, Walter et al. (2011) found a drop in head injury rate of 

4 bicyclists at the time when the legislation was enacted and they claimed that there was a positive 

5 effect on bicyclist head injuries. Macpherson et al. (2002) found the bicycle-related head injury 

6 rate for children declined significantly (45% reduction) in provinces where legislation had been 

7 adopted, compared with provinces and territories that did not adopt the legislation (27% 

8 reduction). Based on the information of 22,814 bicyclists involved in traffic crashes in Spain, 

9 Lardelli-Claret et al. (2003) applied a linear logistic model (accounting for cyclist and crash 

10 related variables) in which helmet use and four types of infraction were set as dependent 

11 variables. Adjusted odds ratios were computed to assess the relation between committing a 

12 traffic violation and using a helmet. Their results suggested that committing a traffic violation 

13 was associated with a lower frequency of helmet use and did not support the existence of a 

14 strong risk compensation mechanism among helmeted bicyclists. Many other studies have also 

15 confirmed the effectiveness of the compulsory helmet law in reducing head injuries (Rivara et al., 

16 1994; Povey et al., 1999; Scuffham et al., 2000; Ji et al., 2006). A more comprehensive review of 

17 the impacts of compulsory helmet law could be found in Macpherson and Spinks (2008). Besides 

18 legislation studies, Moore et al (2011) found that helmet use would significantly decrease the 

19 injury severity of bicyclists in bicycle-vehicle crashes. Most population level studies focus on 

20 accident data. Despite the merits of using such population level accident data, this type of study 

21 has several limitations. First, the conclusions of many previous studies were only built on 

22 summary statistics without accounting for control factors. It is possible that the decline in head 

23 injury rate is the result of other laws or events. Second, due to the lack of reliable bicycle 

24 exposure information, most crash frequency analysis results could be questioned in terms of the 

25 accuracy of their estimation results and corresponding policy implications. Third, and perhaps 

26 most importantly, even if overall crash rates are observed to decline, that doesn’t mean that there 

27 isn’t a compensation effect. If we can identify the compensation effect and develop programs 

28 and rules to control for that, we can achieve even better bicycle safety performance.

29 Different from population level studies, individual level studies could provide more 

30 psychological and behavioral explanations with regard to bicycle helmet’s effects on bicyclists. 

31 By asking 35 bicyclists to cycle 0.4 km downhill, once with and once without a helmet, Phillips 



5

1 et al. (2011) found routine helmet users reported experiencing higher risk and cycled slower 

2 when they did not wear their helmet in the experiment than when they did. On the contrary, those 

3 who use helmets routinely perceived reduced risk when wearing a helmet, and compensated by 

4 cycling faster. Gamble and Walker (2016) conducted a lab-based experiment measuring risk-

5 taking of those either wearing a bicycle helmet, finding higher levels of risk-taking and sensation 

6 seeking in the helmet condition. According to a study based on school-age children, 

7 Morrongiello et al. (2007) found children went more quickly and behaved more recklessly in 

8 running an obstacle course when wearing safety gear than when not wearing gear, providing 

9 evidence of risk compensation. However, other studies find no evidence supporting the existence 

10 of helmet compensation effect. Fyhri et al. (2012) used structural equation model to analyze 

11 whether the lack of effect of helmet wearing laws was due to risk compensation or population 

12 shifts (discouraging some bicyclists to bike). Their results suggest that fast bicycling behavior is 

13 less likely to be the result of compensating for a safety device. Instead, safest bicyclists would be 

14 somewhat discouraged from bicycling by introducing helmet law. In the same vein, by 

15 interviewing 394 injured children (aged 8 to 18) from Montreal Children's Hospital emergency 

16 department, and comparing protective equipment users and non-equipment users, Pless et al. 

17 (2006) also found little support for risk compensation behavior among their study age group. 

18 However, these studies rely heavily on parametric models (e.g. linear regressions) to 

19 control for possible confounders in which estimation results of helmet effects might be biased. 

20 Nevertheless, the existence of helmet compensation effect is still an open question. Thus, in vein 

21 of the individual level study stream, by designing an experiment capturing individual bicyclist 

22 behaviors and employing a more sophisticated modeling framework (e.g.TMLE) and data-driven 

23 or machine learning estimation techniques, we hope to provide new insights that will inspire 

24 future work in furthering our understanding of the impact of bicycle helmet. 

25 In the next section, we will describe an experiment design and discuss how individual 

26 level data was collected in our study.

27 3. Experiment Design and Data Collection 

28 To assess the effect of helmet use, stated preference surveys were conducted using Qualtrics, an 

29 online survey system. The survey consists of three sections. The first section is a questionnaire 

30 that gathers socioeconomic information including gender, age, income, daily travel mode, etc. 
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1 This section also establishes whether the bicyclist is a helmet user. A bicyclist is identified as a 

2 helmet-user if their self-reported helmet usage frequency is ‘always’, ‘often’, or ‘sometimes’. If 

3 the frequency is stated as ‘seldom’ or ‘never’, then they are defined as a non-user. Detailed 

4 description regarding each variable and summary statistics can be found in Table 1.

5 Table 1 Socio-demographic Information

Variable Description and Summary Statistics
Gender Male (71%); Female (29%)
Marital Status Married (37%); Single (63%)
Age Continuous (Mean 34, Max 67, Min 19)

The highest degree or level of education you have 
completed

High school (8%); Technical college degree (2%);
Bachelor's degree (31%); Master's degree (41%); 
Doctorate Degree (18%)

Are you currently a student? Yes (28%); No (72%)

What is your annual income ($)?

0--40,000 (26%); 40,001--60,000 (8%); 60,001--
80,000 (11%); 80,001--100,000 (11%); 100,001--
120,000 (12%); 120,001--140,000 (11%); 
140,001--160,000 (10%); 160,001--180,000 (5%); 
180,001--200,000 (2%); Above 200,000 (2%)

Including yourself, what is your household size? 1 (25%); 2 (29%); 3 (18%); More than 3 (28%)
Including yourself, how many people in your 
household are currently employed? 1 (35%); 2 (39%); 3 (13%); More than 3 (13%)

How many bicycles do you own? 0 (6%); 1 (50%); 2 (30%); 3 (5%); More than 3 
(9%)

How many automobiles do you own? 0 (23%); 1 (42%); 2 (24%); 3 (9%); More than 3 
(2%)

On average, how many days do you ride a bicycle 
per week?

1 (20%); 2 (17%); 3 (19%); 4 (17%); 5 (9%); 6 
(5%); 7 (13%)

On average, how long does your biking trip take?

Less than 10 minutes (6%); Between 10 and 20 
minutes (27%); Between 20 and 30 minutes 
(19%); Between 30 and 40 minutes (17%);  
Between 40 and 50 minutes (15%); Above 50 
minutes (15%)

How often do you use your helmet? Always (38%); Often (21%); Sometimes (7%); 
Seldom (21%); Never (13%)

6
7 The second section is a video clip survey which is designed to elicit a bicyclist’s actual 

8 risk-taking decisions under different real world bicycling situations. Twelve 20-second video 

9 clips were shot from various streets in the city of Berkeley from the perspective of a bicyclist 

10 riding behind another bicyclist. Each of these videos was presented to each survey participant in 
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1 a random order1 for them to envision themselves as the bicyclist traveling behind the one seen in 

2 the video. After watching each video clip, respondents made decisions on whether or not they 

3 would overtake the bicyclist in front of them. See Figure 1 for screenshots of selected scenarios. 

4 For instance, in the last picture of Figure 1 (located at the lower right corner), it represents the 

5 situation of no vehicle or parking or bicycle lane presence and 2 lanes. For this case, the question 

6 for the respondents is: “You are biking for recreation and you are behind a bicyclist traveling at 

7 10 mph (38kph), would you overtake the bicyclist in the video?” The overtaking action is defined 

8 as risk-taking behavior, because in our designed scenarios, one can only overtake from the left 

9 leading to potential higher risk of interacting with passing vehicles. 

10 Six design factors - street parking, vehicle presence, number of lanes, bicycle lane 

11 availability, bicyclist speed and trip purpose - were selected to capture common bicycling 

12 environment. The goal of presenting real-world videos is to mimic actual bicycling situations for 

13 survey participants and help reveal their true bicycling behavior. Since it is impossible to 

14 develop all possible scenarios, twelve scenarios were developed using a fractional factorial 

15 design based on the following factors. 

16 • Trip Purpose: Commuters may experience sensitivity to time greater than recreational 

17 bicyclists. All scenarios that were developed were either for commuting or recreational 

18 purposes. 

19 • Parking: Bicyclists are aware of parked vehicles and the possibility of vehicle doors 

20 opening or vehicles pulling out of their parking locations. There are two levels of this 

21 factor: with parking and without parking.

22 • Vehicle Presence: Passing vehicles pressure bicyclists to ride close to the curb or street 

23 parked vehicles. Similar to parking indicator, this factor also has two levels: vehicle 

24 presence and no vehicles.

25 • Number of Vehicular Lanes: Bicyclists may feel more comfortable on streets with one 

26 travel lane in each direction than 2 lanes. This is because vehicular presence and 

27 vehicular speeds may not be as high. Two design levels are used: one travel lane and two 

28 travel lanes.

1 Due to survey setting adjustment, some participants were presented with ten randomly selected video clips instead 
of twelve.
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1 • Bike Lane Availability: Bicycle lane may increase a bicyclist’s sense of safety while 

2 there is a bike lane. Bike lane availability also has two levels.

3 • Bicyclist Speed: High bicyclist speed is often associated with risk taking behavior. Three 

4 speeds were used in the scenarios. 10-mph bicyclist speed, 15-mph bicyclist speed, and 

5 20-mph bicyclist speed. 

6 The third section is a questionnaire of Likert-scale questions that intends to capture 

7 bicycling habits and preferences, such as whether or not they feel comfortable riding close to 

8 moving vehicles, the frequency of using hand signals, etc. Responses to these questions will 

9 serve as another set of confounders which we need to control for. Detailed scores can be found in 

10 Table 2.

11 This video-based online survey was sent to graduate students in the Department of Civil 

12 and Environmental Engineering at UC Berkeley and members of San Francisco Bay Area 

13 Bicycle Coalition. At this point, there is no mandatory helmet use law in the Bay Area, allowing 

14 us to observe responses from both helmet users and non-users. In the invitation email, we have 

15 screening questions to make sure survey participants are bicyclists. We have gathered responses 

16 from 131 survey participants, 86 of whom are found to be helmet-users.  After removing 33 

17 missing responses, we end up with 1355 observations (where we have a maximum of 12 

18 observations for any one participant).  

19 Notably, due to limited sample size (only 131 participants), we only apply a binary split 

20 of survey participants. In this paper, we treat a bicyclist as a helmet user if her/his self-reported 

21 helmet usage frequency is ‘always’, ‘often’, or ‘sometimes’. However, the ‘sometimes’ category 

22 might be an important third group - perhaps including those who wear a helmet when mountain 

23 biking or racing, but not when commuting at relatively slow speed. This could be analyzed when 

24 more data becomes available. 

25 Figure 2 presents the results of individual overtake rate (defined as total number of 

26 overtakes per individual divided by total number of evaluated video clips per individual) across 

27 different helmet use frequency categories. The figure suggests that individuals who always or 

28 often use helmets tend to have higher overtake rate. However, this rough comparison might not 

29 provide us with a statistically valid helmet effect estimation result. In the following sections, we 

30 will introduce statistical models that can give us more reliable helmet effect estimates. 

31
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1

2 Figure 1 Screen Shot of Selected Scenarios where Design Factors Vary Systematically

3 Table 2 Liker-scale Statement Questions (1-Strongly disagree, 7-Strongly agree)

Statement Mean Standard Deviation

I like to ride fast 4.5 1.7
I often try to ride faster than other bicyclists and overtake them on the 
road 4.0 1.7

I do not like it when other bicyclists are faster than me 3.9 1.6
I usually detour to a longer and safer route to avoid a dangerous but 
shorter route 4.0 1.6

I prefer to ride on the sidewalk to avoid interaction with vehicles 3.8 1.8
I always make a full stop at a four-way-stop intersection 4.2 1.7
I always feel comfortable riding close to moving vehicles 3.0 1.7
I always feel comfortable riding close to parked vehicles 3.1 1.7
I always move to the front of queued vehicles when I arrive at 
signalized intersections 4.5 1.7

I feel that my bicycling environment is generally safe 4.0 1.8
I always feel safe when bicycling on a street without a bicycle lane 3.3 1.7
I always step off the bicycle when I am about to cross at a crosswalk 3.6 1.8
I always ride against red lights when there is no crossing traffic 3.0 1.6
I feel comfortable riding in the opposite direction on a one-way street 2.6 1.5
I am always aware that a vehicle is approaching me from behind 4.8 1.5
I always use hand signals when I need to make turns at intersections 4.9 1.5
I always slow down when I see a parallel parked vehicle pulling out of 
their spot. 5.5 1.3

4



10

1

2 Figure 2 Overtake Rate Across Different Helmet Use Categories

3

4 4. Estimators for the Average Treatment Effect

5 We are interested in measuring the causal effect of treatment  (1-helmet user, 0-otherwise) on 𝐴

6 outcome  (1-overtake, 0-otherwise). Following the Neyman–Rubin causal model framework 𝑌

7 (Sekhon, 2007), we can define the potential outcome or counterfactuals of interests as 𝑌𝐴: 𝐴 =

8 , the overtaking decision under helmet use  or non-helmet use . Then the {1,0} (𝐴 = 1) (𝐴 = 0)

9 treatment effect for a single observation is defined as . However, it is impossible to 𝑌1 ‒ 𝑌0

10 observe both  and  for the same observation at the same time; hence we can only identify the 𝑌1 𝑌0

11 treatment effect on expectation by

12           (1)𝜏 = 𝐸[𝑌1 ‒ 𝑌0] = 𝐸[𝑌1] ‒ 𝐸[𝑌0]

13 This is called the average treatment effect (ATE), which can be interpreted as the average 

14 causal risk difference between helmet use  and non-helmet use . In a randomized (𝐴 = 1) (𝐴 = 0)

15 experiment where individuals can be randomly assigned to helmet use group and non-helmet use 
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1 group, we can simply take the empirical difference of overtaking rates between treatment group 

2 and control group to obtain an unbiased estimate of the ATE. 

3 However, in our setting, we cannot manipulate helmet use (treatment) assignment, as 

4 survey participants self-select into the treatment and control groups, based on whether they do or 

5 don’t wear helmets while bicycling. In order to control for self-selection in estimating ATE, we 

6 can condition on covariates  and , such that  denotes video-specific covariates (related to the 𝑋 𝑍 𝑋

7 six design factors) and can be treated as sampling from real world bicycling situations, and  𝑍

8 denotes both individual-specific demographic characteristics (e.g. age and gender) and 

9 individual-specific attitudinal characteristics (responses to statements in Table 2). We can 

10 represent the relationship between , ,  and  as follows:𝐴 𝑌 𝑋 𝑍
𝐴 = 𝑓𝐴(𝑍,𝜀𝐴) (2)

𝑌 = 𝑓𝑌(𝑋,𝑍,𝐴,𝜀𝑌) (3)

11 where  and  are error terms; and  and  denote data generating process for A and Y, 𝜀𝐴 𝜀𝑌 𝑓𝐴 𝑓𝑌

12 respectively. We implicitly assume that helmet use depends solely on individual-specific 

13 demographic and attitudinal characteristics; and overtaking decisions depend on video-specific 

14 design factors, individual-specific demographic and attitudinal characteristics, and helmet use. 

15 For identification purpose, we assume further that:

𝜀𝐴 ⊥ 𝜀𝑌| 𝑍 (4)

16 This assumption implies that after conditioning on the individual-specific demographic and 

17 attitudinal characteristics, any observed association between helmet use and overtaking behavior 

18 is due to the effect of the former on the latter. Put another way, treatment  can be viewed as 𝐴

19 good as randomly assigned after conditioning on . 𝑍

20 Under this assumption, ATE can be estimated in one of three approaches using the G-

21 computation estimator, the inverse probability of treatment weighted (IPTW) estimator, or the 

22 targeted maximum likelihood estimator (TMLE). Over subsequent subsections, we describe each 

23 of these estimators in greater detail.

24 4.1 The G-computation estimator

25 The traditional approach to estimating the ATE is based on the G-computation estimator 

26 proposed by Robins (1986):



12

𝜏 = 𝐸𝑋,𝑍[𝐸[𝑌|𝐴 = 1,𝑋,𝑍] ‒ 𝐸[𝑌|𝐴 = 0,𝑋,𝑍]] (5)

1 where  is the conditional expectation of the response function  over the error term 𝐸[𝑌|𝐴,𝑋,𝑍] 𝑓𝑌

2 , given ,  and . The reader should note that in our case, the following holds true:𝜀𝑌 𝐴 𝑋 𝑍

𝐸[𝑌|𝐴,𝑋,𝑍] = 𝑃(𝑌 = 1|𝐴, 𝑋,𝑍) (6)

3 where  denotes the probability that  equals , conditional on the random 𝑃(𝑌 = 1|𝐴, 𝑋,𝑍) 𝑌 1

4 variables ,  and . Let  denote an estimate of the same. In the next section, we 𝐴 𝑋 𝑍 𝑃(𝑌 = 1|𝐴, 𝑋,𝑍)

5 will describe how  may be estimated in practice, using nonparametric procedures for  𝑃(𝑌|𝐴, 𝑋,𝑍)

6 model estimation.

7 Once we have good estimates for , we can plug in  and  to 𝑃(𝑌|𝐴, 𝑋,𝑍) 𝐴 = 1 𝐴 = 0

8 generate predicted probabilities of overtaking for each observation for each individual. The mean 

9 difference between corresponding counterfactuals, marginalized over all individuals and 

10 observations, yields an estimate for ATE: 

𝜏𝐺𝐶 =
1
𝑁

𝑁

∑
𝑛 = 1

1
𝑇𝑛

𝑇

∑
𝑡 = 1

𝑃(𝑌 = 1|𝐴 = 1, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛) ‒ 𝑃(𝑌 = 1|𝐴 = 0, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛) (7)

11 where  denotes the number of individuals in the sample;  denotes the number of observations 𝑁 𝑇𝑛

12 for individual ;  denotes the video-specific covariates for observation  corresponding to 𝑛 𝑥𝑛𝑡 𝑡

13 individual ; and  denotes the individual-specific covariates for individual . In this way, we 𝑛 𝑧𝑛 𝑛

14 can mimic the conditions where each individual received and did not receive the treatment A. If 

15 the model  is correctly specified, the G-computation estimator for ATE is consistent. 𝑃(𝑌|𝐴, 𝑋,𝑍)

16 4.2 The inverse probability of treatment weighted (IPTW) estimator

17 The IPTW estimator of the ATE does not require assuming a model for , but relies 𝑃(𝑌|𝐴, 𝑋,𝑍)

18 instead on a model for , i.e. probability of self-selecting into the treatment or control 𝑃(𝐴|𝑍)

19 group, given the individual-specific covariates . Let  denote an estimate of the same. 𝑍 𝑃(𝐴|𝑍)

20 Then, the IPTW estimator is given by:

𝜏𝐼𝑃𝑇𝑊 =
1
𝑁

𝑁

∑
𝑛 = 1

1
𝑇𝑛

𝑇

∑
𝑡 = 1

𝑤𝑛𝑦𝑛𝑡 (8)
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𝑤𝑛 =
𝐼[𝑎𝑛 = 1]

𝑃(𝐴 = 1|𝑍 = 𝑧𝑛) ‒
𝐼[𝑎𝑛 = 0]

𝑃(𝐴 = 0|𝑍 = 𝑧𝑛)
(9)

1 where  is a weighting factor for individual ;  equals one if individual  during observation 𝑤𝑛 𝑛 𝑦𝑛𝑡 𝑛

2  indicated that they would overtake, and zero otherwise; and  is an indicator function that 𝑡 𝐼

3 equals one if the condition within the bracket is satisfied, and zero otherwise.

4 By reweighting each observed individual in the sample by the inverse of the probability 

5 of treatment , the IPTW estimator creates a pseudo population where treatment  is no longer 𝐴 𝐴

6 confounded with the observed covariates  (Robins, 2000). Conditional on , assignment to 𝑍 𝑍

7 treatment or control group is effectively random, and the difference between mean outcomes 

8 between the weighted treatment and control groups yields an estimate for ATE. Consequently, 

9 the IPTW estimator does not require the estimation of the model . If the model 𝑃(𝑌|𝐴, 𝑋,𝑍) 𝑃

10  is correctly specified, the IPTW estimator for ATE is consistent (Neugebauer and van der (𝐴|𝑍)

11 Laan, 2005).

12 4.3 The targeted maximum likelihood estimator (TMLE)

13 The Targeted Maximum Likelihood Estimator (TMLE) has been proposed as a viable alternative 

14 that combines the G-computation and IPTW estimators. For a comprehensive discussion about 

15 TMLE, the reader is referred to van der Laan and Rubin (2006), Gruber and van der Laan (2009), 

16 and van der Laan and Rose (2011). 

17 In our case, the TMLE can be implemented in six steps. First, we estimate a model of 

18 how individuals self-select into the treatment or control group, denoted  as before. 𝑃(𝐴|𝑍)

19 Second, we use predicted probabilities from this model to create a new “clever covariate”, 

20 denoted , similar to the weights used by the IPTW estimator (van der Laan and Rose, 𝐻(𝐴, 𝑍)

21 2011):

𝐻(𝐴 = 𝑎𝑛, 𝑍 = 𝑧𝑛) =
𝐼[𝑎𝑛 = 1]

𝑃(𝐴 = 1|𝑍 = 𝑧𝑛) ‒
𝐼[𝑎𝑛 = 0]

𝑃(𝐴 = 0|𝑍 = 𝑧𝑛)
(10)

22

23
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1 Third, we estimate a separate model of overtaking behavior, denoted  as before. Let 𝑃(𝑌|𝐴, 𝑋,𝑍)

2  denote an estimate of the same, as before. Fourth, we run a logistic regression of the 𝑃(𝑌|𝐴, 𝑋,𝑍)

3 actual overtaking outcome on the clever covariate  calculated in the second step, using 𝐻(𝐴, 𝑍)

4 the predicted overtaking probabilities from the model estimated in the third step as offsets:

5

logit[𝑃'(𝑌 = 𝑦𝑛𝑡|𝐴 = 𝑎𝑛, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛)]
= logit[𝑃(𝑌 = 𝑦𝑛𝑡|𝐴 = 𝑎𝑛, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛)] + 𝛾𝐻(𝐴 = 𝑎𝑛, 𝑍 = 𝑧𝑛)       

(11)

6 where  denotes the logit function, i.e. the inverse of the logistic function;  is an logit 𝑃'(𝑌|𝐴, 𝑋,𝑍)

7 update to the initial model of overtaking behavior; and  is a parameter to be estimated, typically 𝛾

8 using maximum likelihood estimation, such that  is an estimate of the same. Fifth, we update 𝛾

9 our initial estimate of , denoted , using the parameter estimate : 𝑃(𝑌|𝐴, 𝑋,𝑍) 𝑃'(𝑌|𝐴, 𝑋,𝑍) 𝛾

𝑃'(𝑌 = 1|𝐴 = 𝑎𝑛, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛)
= exp{logit[𝑃(𝑌 = 1|𝐴 = 𝑎𝑛, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛)]} + 𝛾𝐻(𝐴 = 𝑎𝑛, 𝑍 = 𝑧𝑛) (12)

10 As in the case of the G-computation estimator, we can plug in  and  to generate 𝐴 = 1 𝐴 = 0

11 predicted probabilities of overtaking for each observation for each individual. And finally, the 

12 mean difference between corresponding counterfactuals, marginalized over all individuals and 

13 observations, yields an estimate for ATE: 

𝜏𝑇𝑀𝐿𝐸 =
1
𝑁

𝑁

∑
𝑛 = 1

1
𝑇𝑛

𝑇

∑
𝑡 = 1

[𝑃'(𝑌 = 1|𝐴 = 1, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛) ‒ 𝑃'(𝑌 = 1|𝐴 = 0, 𝑋 = 𝑥𝑛𝑡,𝑍 = 𝑧𝑛)]

(13

)

14 What is the logic behind the TMLE? Our initial outcome probability function 𝑃

15  is typically estimated through procedures such as maximum likelihood estimation or (𝑌|𝐴, 𝑋,𝑍)

16 cross entropy minimization that aim at achieving optimal bias-variance tradeoff for the full 

17 conditional expectation function . However, we are not interested in estimating the 𝐸[𝑌|𝐴,𝑋,𝑍]

18 full conditional expectation; we wish to estimate the ATE of  on . Achieving the optimal bias-𝐴 𝑌

19 variance tradeoff for the full conditional expectation function may not produce the optimal bias-

20 variance tradeoff for the ATE.
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1 The TMLE corrects the wrong bias-variance tradeoff used in estimating  by 𝑃(𝑌|𝐴, 𝑋,𝑍)

2 leveraging the estimate of  in a way that targets the maximum likelihood estimate of the 𝑃(𝐴|𝑍)

3 ATE. If  is correctly specified, the estimate  should be zero, and our estimate for 𝑃(𝑌|𝐴, 𝑋,𝑍) 𝛾

4 ATE should be consistent. If  is not correctly specified, but  is correctly 𝑃(𝑌|𝐴, 𝑋,𝑍) 𝑃(𝐴|𝑍)

5 specified, the targeting step given by equations (10)-(13) reduces bias for ATE, the target 

6 parameter of interest (van der Laan, 2010). In this way, the TMLE is doubly robust: if either the 

7 model  or the model  is correctly specified, the TMLE for ATE is consistent 𝑃(𝐴|𝑍) 𝑃(𝑌|𝐴, 𝑋,𝑍)

8 (van der Laan and Rubin, 2006).

9

10 5 Model Specification 

11 Having discussed different estimators for ATE, we now need to specify functional forms for the 

12 models  and , and estimate them using the observed data. Most existing 𝑃(𝐴|𝑍) 𝑃(𝑌|𝐴, 𝑋,𝑍)

13 studies on helmet effects analysis have used parametric models. For instance, both  and 𝑃(𝐴|𝑍) 𝑃

14  are typically specified as logistic regression models. However, parametric models (𝑌|𝐴, 𝑋,𝑍)

15 may be too restrictive in that we only search in a limited function space and bet on the first-order 

16 approximation. If the models are incorrectly specified, our ATE estimators may be biased.

17 An increasingly popular alternative is to use nonparametric models, such as the Super 

18 Learner (van der Laan et al., 2007). Nonparametric models do not have well-defined functional 

19 forms with a fixed number of parameters. Rather, they are data-adaptive models, such that the 

20 number of parameters increases and the functional form grows in complexity as more data 

21 become available. Nonparametric models can asymptotically mimic any parametric model.

22 We specify a parametric model for . In particular, we use a logistic regression, 𝑃(𝐴|𝑍)

23 where helmet use  is modeled as a function of individual-specific characteristics . We only 𝐴 𝑍

24 have 131 individuals in the dataset, and the estimation of more complex nonparametric models 

25 of self-selection was deemed infeasible. However, we have 1355 observations of overtaking 

26 behavior for these individuals, and are able to specify a semi(non)parametric model for 𝑃

27 . In particular, we use Super Learner, described in more detail over subsequent (𝑌|𝐴, 𝑋,𝑍)

28 paragraphs.
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1 Super Learner, or stacking method, is an ensemble learning technique introduced by 

2 Wolpert (1992) and extended to a regression framework by Breiman (1996). Van der Laan et al. 

3 (2007) provide the theory for stacking and have shown that Super Learner performs 

4 asymptotically as well as best possible weighted combination of the base learners. Base learners 

5 refer to any possible parametric or non-parametric functions that we use to fit , such 𝑃(𝑌|𝐴, 𝑋,𝑍)

6 as a logistic regression or a decision tree. The Super Learner seeks to find the optimal linear 

7 combination of multiple base learners. By leveraging the strengths of different base learners, one 

8 can achieve improvement in prediction accuracy. 

9 The idea is to perform k-fold cross-validation on the original dataset (a.k.a. level zero 

10 data) using each base learner, then stack the cross-validated predictions from each learner to 

11 form a new set of features (a.k.a. level one data) and perform another layer of training based on 

12 level one data. Take the estimation of  as an example. Suppose we have selected L 𝑃(𝑌|𝐴, 𝑋,𝑍)

13 base learners . Instead of following a winner-takes-all strategy by 𝑃1(𝑌|𝐴, 𝑋,𝑍),…,𝑃𝐿(𝑌|𝐴, 𝑋,𝑍)

14 selecting the learner based on lowest cross validation error (e.g. cross-entropy error), we can 

15 stack the predicted outcome probabilities from different learners to form a new design matrix and 

16 combine them in the following form (Wolpert 1992; Brieman 1996b):

𝑃(𝑌 = 1|𝐴, 𝑋,𝑍) =
1

1 + exp{ ‒
𝐿

∑
𝑙 = 1

𝛼𝑙logit[𝑃𝑙(𝑌 = 1|𝐴, 𝑋,𝑍)]}
(14)

17 where  are the weights associated with each base learner, such that  and ; 𝛼𝑙 𝛼𝑙 ≥ 0 ∑𝐿
𝑙 = 1𝛼𝑙 = 1

18 and  denotes cross-validated predicted outcome probabilities from base leaner l. 𝑃𝑙(𝑌 = 1|𝐴, 𝑋,𝑍)

19 The  are chosen to minimize the cross entropy loss between observed outcomes and predicted 𝛼𝑙

20 outcome probabilities. 

21 In terms of base learners, we want a library that covers the function space well in places 

22 where they are needed, and are sufficiently different from each other for the meta-learning to be 

23 effective (Hastie et al., 2009). In this case, five categories of base learners are considered to find 

24 the best estimates of the outcome model : multivariate adaptive polynomial spline 𝑃(𝑌|𝐴, 𝑋,𝑍)

25 regression (MARS), decision tree, Lasso (L2 regularization), Ridge (L1 regularization), and 

26 standard linear logistic regression with main effects. Each base learner is trained based on 
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1 minimizing cross-entropy loss using 5-fold cross validation. Super Learner is used to find the 

2 best linear combination of these five base learners. 

3 By using data-adaptive estimation procedures such as Super Learner to estimate the 

4 outcome model , we can improve prediction accuracy and decrease the likelihood of 𝑃(𝑌|𝐴, 𝑋,𝑍)

5 incorrect model specification. However, we may lose in terms of model interpretability. There is 

6 a general debate between complex machine learning algorithms (black box) and simple 

7 interpretable models like linear regression. For example, we are unable to estimate the effects of 

8 the six design factors on overtaking decisions using the TMLE framework because those 

9 covariates enter  in a highly non-linear manner. Nevertheless, since our goal is to 𝑃(𝑌|𝐴, 𝑋,𝑍)

10 estimate the causal effect of helmet use on overtaking decisions, we are willing to sacrifice 

11 interpretability of other covariates. 

12 Besides point estimation of ATE, we also need to make statistical inference. To do so, we 

13 use bootstrap technique to estimate standard errors for our estimate of ATE. However, there are 

14 some caveats about the bootstrap implementation. Observations generated by the same 

15 individuals are likely to be correlated, violating the independence assumption. To account for 

16 this potential correlation, we use individual-based nonparametric bootstrap instead of 

17 observation-based nonparametric bootstrap. Specifically, we randomly sample individuals from 

18 our sample population, such that all observations generated by an individual appear in a 

19 bootstrap sample if that individual is selected. In this way, correlation among observations 

20 generated by the same individual is preserved. 

21 6 Estimation Results 

22 The Super Learner estimation results of outcome mechanism  are presented in Table 𝑃(𝑌|𝐴, 𝑋,𝑍)

23 3. It is found that the weighted combination of decision tree, MARS, and Ridge produce the best 

24 estimation of . The ATE based on TMLE using the Super Learner is estimated to be  𝑃(𝑌|𝐴, 𝑋,𝑍)

25 0.156 which indicates that, on average, the likelihood of overtaking is 15.6% higher for helmet 

26 users than non-helmet users. This estimate is in line with the information presented in Figure 2, 

27 which suggests the existence of helmet compensation effects in our study sample. For 

28 comparison purpose, we also include the results from the following estimators: G-computation 

29 based on linear logistic regression, G-computation based on Super Learner, and IPTW. The 

30 results are shown Table 4. All four estimators yield consistent results in the mean estimation. 
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1 Regarding ATE estimates, IPTW is almost four times larger than G-computation estimate. 

2 TMLE leverages both treatment mechanism and outcome mechanism estimation to achieve bias 

3 reduction compared to G-computation estimate. This explains why TMLE ATE estimate lies in 

4 between G-computation and IPTW estimates.

5 We also quantify the uncertainty associated with these estimators using nonparametric 

6 bootstrap. As mentioned before, due to repeated measurements from a same survey participant, 

7 independence assumption might no longer hold. Therefore, instead of resampling observations, 

8 we resample individuals. 500 bootstrap samples were generated and each bootstrap sample yields 

9 a point estimation result. As shown in Table 4, 95% confidence intervals are constructed using 

10 quantiles of the empirical distribution of the estimates. Empirical distributions of bootstrap 

11 estimates are presented in Figure 3. IPTW is found to have the highest variance across four 

12 estimators. G-computation estimates (based on linear logistic regression and Super Learner) are 

13 found to have lower variance. However, the ATE estimate from linear logistic regression is 

14 found to be statistically insignificant based on nonparametric bootstrap, whereas the rest three 

15 estimators are found to produce statistically significant results. This suggests the widely used 

16 linear model may be biased and results in “no effect” being identified. To this end, TMLE is 

17 preferable due to its desirable theoretical properties (double robust and bias reduction than G-

18 computation) and good finite sample performance (smaller variance than IPTW).

19

20 Table 3 Super Learner Estimation of Overtake Decisions

𝑃(𝑌|𝐴, 𝑋,𝑍) 5-fold CV cross-entropy loss Weights
Decision tree with depth 5 0.494 0.357
MARS 0.510 0.135
Ridge regression with 
regularization parameter 
equals to 100

0.474 0.508

21 Note: to save space, algorithms with a zero weight are not presented.

22

23

24

25

26
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1 Table 4 Estimation Results

G-computation 
(linear 

regression)

G-computation 
(Super Learner)

IPTW (Super 
Learner) TMLE (Super 

Learner)

Average 
treatment 
effects

0.086 0.062 0.222 0.156

Bootstrap 
based 
standard 
deviation

0.057 0.024 0.078 0.058

Bootstrap 
based 95% 
confidence 
interval 

[-0.024, 0.203] [0.020, 0.104] [0.093, 0.450] [0.066, 0.281]

2   

3 Figure 3 Bootstrap Results of Four Estimators

4
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1 7. Conclusions and Future Research

2 In this study, we investigated the compensation effect of helmet use on a bicyclist’s risk-taking 

3 behavior. Our hypothesis is that helmet users will be more likely to engage in risk-taking 

4 behavior due to helmet compensation effect. Based on 131 survey participants, a significant 

5 positive compensation effect has been identified using the TMLE estimator and the size of effect 

6 is estimated to be about 15.6%. Due to the ethical and practical impossibility of randomizing 

7 helmet use in our survey, the estimated effect obtained can at best be considered a biased 

8 assessment of the helmet effect. Yet the hope is that our video-based experiment design will 

9 serve as a pilot study in this new perspective and inspire further exploration on better understand 

10 of the response of bicyclists as a result of mandatory bicycle helmet laws.

11 Our findings should be of importance to policy makers who might be interested in 

12 imposing mandatory bicycle helmet laws to increase road safety. Our analysis suggests that the 

13 benefits from any such policy could potentially be weakened by helmet compensation effects. To 

14 this regard, it might be beneficial to initiate road safety programs that could mitigate these 

15 unintended compensation effects. For instance, traffic calming measures (e.g. roundabouts, curb 

16 bulb-outs, speed humps, and shared space) may help reduce the speed of vehicles and bicyclists 

17 by increasing the perceived risk for both parties, resulting in slow traffic and thereby reducing 

18 the number of seriousness of injuries. 

19 Some studies have also recommended using cost-benefit analysis to determine if 

20 mandatory bicycle helmet use laws are worthwhile (Robinson 2007). It has been suggested that 

21 helmet legislation should be evaluated in terms of the effect on bicycle-use, injury rates per km 

22 cycled, and changes in percentages of hospitalized bicyclists with head and brain injuries. By 

23 identifying helmet compensation effects, our study also adds another important dimension in the 

24 cost-benefit framework of evaluating helmet law.

25 There are two major limitations of this study. The first limitation is the use of a small and 

26 potentially biased sample. It is hard to generalize the results based on only 131 individuals. In 

27 order to obtain a full spectrum of helmet effect on bicyclists, we need to increase our sample size 

28 and incorporate more representative individuals.

29 Second, it is possible that there might be unobserved confounders influencing both 

30 helmet use and overtaking behavior that violate the identification assumption we mentioned 
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1 above, hence resulting in self-selection bias. For instance, bicycling culture of a community may 

2 influence a bicyclist’s attitudes toward both helmet use and bicycling behavior. The hope is that 

3 by controlling for observed sociodemographic characteristics and personal attributes, we can 

4 balance out the differences other than helmet use itself between helmet users and non-users, 

5 hence be able to identify the causal effects of helmet use. To this end, more aggregate level 

6 sociodemographic characteristics such as city-level median income and city-level trip frequency 

7 should be collected as additional controls. It is also noted that the most commonly used 

8 econometric approach of adding control variables to account for self-selectivity is to apply linear 

9 regression with observable explanatory variables as covariates. However, this approach might be 

10 too simplistic and sometimes problematic (Mannering, 2018). Therefore, in this paper, we use 

11 data-driven or machine learning techniques to account for observable explanatory variables in 

12 two layers: layer one is helmet use prediction and layer two is overtaking decisions prediction. 

13 Then by applying TMLE framework, we then combine both prediction models to control for 

14 self-selection in a more robust manner. 

15

16
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